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 Linear Buckling Analysis 

Linear buckling analysis is used to determine the stability of structures subjected to 

compressive forces. The instability of a structure due to buckling is closely related to its 

geometric shape, stiffness, boundary conditions, and is independent of material strength. 

When a slender structure is subjected to axial compressive forces at its ends, it 

undergoes compressive deformation proportional to the magnitude of the load when the 

load is small. However, when the load exceeds a certain threshold, buckling occurs, 

causing significant deformation in the structure even without an increase in the load 

magnitude. Figure 1.13.1 illustrates the buckling shapes of a cylindrical column based 

on variations in its dimensions and length. 

 

          Figure 1.13.1 Buckling Shapes of Cylindrical Columns Based on Differences in Area and Length. 
 

In the case of A, since the cross-sectional areas of both cylinders are the same, the stress 
magnitude generated by the formula σ = F/A is equal. However, when the length of the 
cylinder is increased, significant deformation (buckling) can occur.  
In the case of B, both cylinders have the same length, but different cross-sectional areas. 
When the same compressive force is applied, the smaller cross-sectional area will 
experience a higher stress, leading to buckling. In other words, as the cross-sectional area 
of the cylinder decreases (resulting in higher compressive stress), and as the length of the 
cylinder increases, the probability of buckling occurring becomes higher. 

 
 



Chapter 1 Linear static analysis 

 2  

 
The types of structures for which linear buckling analysis is expected to be performed include: 
 

► Large structures subjected to significant compressive loads. 

► Thin, slender cylindrical structures subjected to axial loads. 

► Thin-walled cylindrical structures exposed to external pressure. 

► Thin-walled structures with pressure applied to their boundaries (e.g., pressure 
vessels). 

► Long and slender cantilever structures that receive transverse end loads on their 
upper surfaces. 

 

 Governing Equation 

In linear static analysis, it is assumed that the structure is subjected to a load and then 

returns to its original state when the load is removed, provided the structure is in a stable 

equilibrium state. However, under certain load conditions, the structure can become 

unstable, and if the external load reaches the critical load that induces instability, 

deformation can continue to occur even if the load magnitude does not increase, resulting 

in buckling. 

Buckling occurs when a structure subjected to compressive loads converts membrane strain 

energy into bending strain energy, and the compressive load at this point is referred to as the 

buckling load or critical load. Typically, the buckling load is calculated by performing an 

eigenvalue analysis, and the computed eigenvalue (λ) is a factor (buckling load factor) for the 

applied load (Pa). The actual buckling load is then calculated as (Pcr = λPa). Linear buckling 

analysis is performed using the following equation: 
 

(K + λKG )φ = 0 (1.13.1) 

Here , K : Elastic Stiffness Matrix 

KG : Geometric Stiffness Matrix 

 

Elastic stiffness is the stiffness determined by the material and shape of a structure, while 

geometric stiffness is the stiffness determined by the stresses generated in a structure 

after the application of loads. This means that when a structure is subjected to stress, its 

stiffness changes, indicating a direct relationship between the applied load and 

geometric stiffness. For example, when a compressive load is applied to a structure like 

a column, geometric stiffness reduces the overall stiffness of the structure. Conversely, 

when a tensile load is applied, geometric stiffness adds to the effect of elastic stiffness, 

leading to an increase in the overall stiffness of the structure. 

Buckling analysis is the situation where the stiffness of the structure becomes zero when 

the effects of both elastic stiffness and geometric stiffness are considered. The 

coefficient values that satisfy this condition correspond to the buckling load factor. The 

buckling load factor represents the ratio of the applied load to the buckling load. When 

the value of this coefficient is greater than 1.0, the structure is considered stable, and 

when it is less than 1.0, it is considered unstable. If the coefficient value is negative, it 

means that the load acts in the opposite direction, and the absolute value of the 
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coefficient becomes the structure's buckling load factor. Eigenvalues represent the 

buckling shapes of the structure, typically showing buckling occurring in the first mode, 

but in some cases, higher modes (2nd, 3rd, etc.) of buckling can also occur depending 

on the shape of the structure. 

 

 Linear Buckling Analysis Flowchart 

The procedure for linear buckling analysis is similar to that of a typical linear static 

analysis. However, there are some differences that set it apart: 

 
► When applying static loads, you can apply the actual load magnitude acting on the 

structure or use unit loads. 

► The buckling load, obtained by multiplying the calculated eigenvalues by the applied 

load, remains the same regardless of the load applied. Therefore, for convenience, 

unit loads are often used. In such cases, the eigenvalues directly represent the 

buckling load. 

► Linear buckling analysis combines the conditions of linear static analysis and 

eigenvalue analysis in a single analysis run. 

► When reviewing the results of buckling analysis, it is necessary to consider a 

combination of factors, including the eigenvalue-based buckling load factor, 

maximum stresses from linear static analysis, and material failure criteria, to assess 

the stability of the structure. 

 

 

 Modeling 
When modeling an analysis model for linear buckling analysis, it is essential to generate 

a sufficient number of elements to represent the buckling mode shapes accurately. 

Typically, it is recommended to perform linear static analysis first and review the range 

of stress values obtained from it. Then, you can use the model created for linear analysis 

to perform buckling analysis. You can use all the elements commonly used in static 

analysis, but when considering the element size, it's crucial to take the buckling mode 

shapes into account and determine the element size accordingly. Especially when using 

solid elements, be mindful of the number of elements in the thickness direction to 

adequately represent bending behavior. 

Linear buckling analysis can use all the elements and element properties commonly used 

in linear static analysis. The key is to adjust the element sizes to accurately capture the 

buckling mode shapes while considering the structure's stability and buckling behavior. 
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 Material 

In linear buckling analysis, the equation used to calculate eigenvalues does not include 

inertial forces, so there is no need to input density as a material property, unlike in modal 

analysis. Therefore, it is sufficient to input the material properties used in linear static 

analysis, which are the elastic modulus and Poisson's ratio. 

 

 Boundary and Load condition 

The loads in linear buckling analysis are typically compressive loads acting along the 

axis of slender and long structures, and the method for applying these loads is the same 

as in linear static analysis. Similarly, the boundary conditions in linear buckling analysis 

are input in the same way as in linear static analysis. However, it's important to note that 

the buckling load of the structure can vary significantly based on the constraints of the 

components. Therefore, it's essential to reasonably set the constraints, taking into 

account the buckling behavior of the structure. 
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 Analysis Execution 

Once the finite element model for the analysis subject is completed, and the load and 

boundary conditions are specified, you are ready to execute the analysis. When selecting 

the analysis type as linear buckling analysis, subcases for linear static analysis and mode 

analysis are automatically generated. 

In linear buckling analysis, you typically don't need to calculate a large number of 

eigenvalues. Specifying the number of eigenvalues is usually sufficient if it's set to around 

5 or fewer. However, when defining a range for eigenvalues, you should be cautious, as 

the values of the eigenvalues in linear buckling analysis can be influenced by the 

magnitude of the loads applied in static analysis. 

So, in summary, linear buckling analysis is usually not concerned with obtaining a large 

number of eigenvalues, and you can often specify a small number of them (e.g., 5 or 

fewer). When specifying an eigenvalue range, be mindful of the fact that eigenvalues in 

linear buckling analysis may be affected by the magnitude of the loads applied in static 

analysis. 

 
The method for specifying the number of eigenvalues in midas NFX is the same as shown in 

Figure 1.13.2, steps ① to ④. 

 

          
Figure 1.13.2 The method for specifying the number of eigenvalues
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 Analysis result 

By analyzing the results of linear buckling analysis, user can anticipate four different 

scenarios. Each of these scenarios can be categorized based on the applied loads, the 

results of static analysis (maximum stress, σmax), the results of eigenvalue analysis 

(buckling load factor, λ), and the material's ultimate strength (Sf). 

 
              Table 1.12.1 Method for analysis the result of bucking analysis 

 

 

When performing linear buckling analysis using unit loads, it is essential to review the 

stresses induced in the structure by applying the calculated buckling loads. In linear 

buckling analysis, the first step is to examine the buckling factor (eigenvalue), which is 

different from the natural frequencies (in Hz) obtained in modal analysis. If, for instance, 

a static analysis used a load of -2,000N, then the actual buckling load for each mode is 

obtained by multiplying the eigenvalue by this load. If the buckling factor for the first mode 

is 0.643, which is less than 1.0, it signifies that the structure will buckle when subjected 

to a compressive load of -1,286N. 

 

If the -2,000N load represents the actual applied load on the structure, then it suggests 

a problem with the structure's linear stability, and linear buckling-induced failure is 

anticipated. In this case, the buckling shape at failure can be assumed to be similar to 

the mode shape of the first mode. 


